Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cheminform ; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track): S12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25810769

RESUMO

BACKGROUND: As we are witnessing a great interest in identifying and extracting chemical entities in academic articles, many approaches have been proposed to solve this problem. In this work we describe a probabilistic framework that allows for the output of multiple information extraction systems to be combined in a systematic way. The identified entities are assigned a probability score that reflects the extractors' confidence, without the need for each individual extractor to generate a probability score. We quantitively compared the performance of multiple chemical tokenizers to measure the effect of tokenization on extraction accuracy. Later, a single Conditional Random Fields (CRF) extractor that utilizes the best performing tokenizer is built using a unique collection of features such as word embeddings and Soundex codes, which, to the best of our knowledge, has not been explored in this context before. RESULTS: The ensemble of multiple extractors outperforms each extractor's individual performance during the CHEMDNER challenge. When the runs were optimized to favor recall, the ensemble approach achieved the second highest recall on unseen entities. As for the single CRF model with novel features, the extractor achieves an F1 score of 83.3% on the test set, without any post processing or abbreviation matching. CONCLUSIONS: Ensemble information extraction is effective when multiple stand alone extractors are to be used, and produces higher performance than individual off the shelf extractors. The novel features introduced in the single CRF model are sufficient to achieve very competitive F1 score using a simple standalone extractor.

2.
J Cheminform ; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track): S2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25810773

RESUMO

The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of different approaches that detect chemicals in documents. We present the CHEMDNER corpus, a collection of 10,000 PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry literature curators, following annotation guidelines specifically defined for this task. The abstracts of the CHEMDNER corpus were selected to be representative for all major chemical disciplines. Each of the chemical entity mentions was manually labeled according to its structure-associated chemical entity mention (SACEM) class: abbreviation, family, formula, identifier, multiple, systematic and trivial. The difficulty and consistency of tagging chemicals in text was measured using an agreement study between annotators, obtaining a percentage agreement of 91. For a subset of the CHEMDNER corpus (the test set of 3,000 abstracts) we provide not only the Gold Standard manual annotations, but also mentions automatically detected by the 26 teams that participated in the BioCreative IV CHEMDNER chemical mention recognition task. In addition, we release the CHEMDNER silver standard corpus of automatically extracted mentions from 17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus in the BioC format has been generated as well. We propose a standard for required minimum information about entity annotations for the construction of domain specific corpora on chemical and drug entities. The CHEMDNER corpus and annotation guidelines are available at: http://www.biocreative.org/resources/biocreative-iv/chemdner-corpus/.

3.
PLoS One ; 9(5): e93949, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24817403

RESUMO

The number of scholarly documents available on the web is estimated using capture/recapture methods by studying the coverage of two major academic search engines: Google Scholar and Microsoft Academic Search. Our estimates show that at least 114 million English-language scholarly documents are accessible on the web, of which Google Scholar has nearly 100 million. Of these, we estimate that at least 27 million (24%) are freely available since they do not require a subscription or payment of any kind. In addition, at a finer scale, we also estimate the number of scholarly documents on the web for fifteen fields: Agricultural Science, Arts and Humanities, Biology, Chemistry, Computer Science, Economics and Business, Engineering, Environmental Sciences, Geosciences, Material Science, Mathematics, Medicine, Physics, Social Sciences, and Multidisciplinary, as defined by Microsoft Academic Search. In addition, we show that among these fields the percentage of documents defined as freely available varies significantly, i.e., from 12 to 50%.


Assuntos
Disseminação de Informação , Internet/estatística & dados numéricos , Publicações/estatística & dados numéricos , Ferramenta de Busca/estatística & dados numéricos , Economia/estatística & dados numéricos , Ciências Humanas/estatística & dados numéricos , Humanos , Medicina/estatística & dados numéricos , Física/estatística & dados numéricos , Ciência/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...